Coverage for pydantic/_internal/_generics.py: 93.44%
226 statements
« prev ^ index » next coverage.py v7.6.12, created at 2025-02-13 19:35 +0000
« prev ^ index » next coverage.py v7.6.12, created at 2025-02-13 19:35 +0000
1from __future__ import annotations 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
3import sys 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
4import types 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
5import typing 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
6from collections import ChainMap 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
7from collections.abc import Iterator, Mapping 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
8from contextlib import contextmanager 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
9from contextvars import ContextVar 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
10from itertools import zip_longest 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
11from types import prepare_class 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
12from typing import TYPE_CHECKING, Any, TypeVar 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
13from weakref import WeakValueDictionary 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
15import typing_extensions 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
17from . import _typing_extra 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
18from ._core_utils import get_type_ref 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
19from ._forward_ref import PydanticRecursiveRef 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
20from ._utils import all_identical, is_model_class 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
22if sys.version_info >= (3, 10): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
23 from typing import _UnionGenericAlias # type: ignore[attr-defined] 1abcdefzAghijklmCDGHIJKLnopqrsEF
25if TYPE_CHECKING: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
26 from ..main import BaseModel
28GenericTypesCacheKey = tuple[Any, Any, tuple[Any, ...]] 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
30# Note: We want to remove LimitedDict, but to do this, we'd need to improve the handling of generics caching.
31# Right now, to handle recursive generics, we some types must remain cached for brief periods without references.
32# By chaining the WeakValuesDict with a LimitedDict, we have a way to retain caching for all types with references,
33# while also retaining a limited number of types even without references. This is generally enough to build
34# specific recursive generic models without losing required items out of the cache.
36KT = TypeVar('KT') 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
37VT = TypeVar('VT') 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
38_LIMITED_DICT_SIZE = 100 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
41class LimitedDict(dict[KT, VT]): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
42 def __init__(self, size_limit: int = _LIMITED_DICT_SIZE) -> None: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
43 self.size_limit = size_limit 1tuabcdefzABgvwhijklmCDxynopqrsEF
44 super().__init__() 1tuabcdefzABgvwhijklmCDxynopqrsEF
46 def __setitem__(self, key: KT, value: VT, /) -> None: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
47 super().__setitem__(key, value) 1tuabcdefzABgvwhijklmCDxynopqrsEF
48 if len(self) > self.size_limit: 1tuabcdefzABgvwhijklmCDxynopqrsEF
49 excess = len(self) - self.size_limit + self.size_limit // 10 1tuabcdefzABgvwhijklmCDxynopqrsEF
50 to_remove = list(self.keys())[:excess] 1tuabcdefzABgvwhijklmCDxynopqrsEF
51 for k in to_remove: 1tuabcdefzABgvwhijklmCDxynopqrsEF
52 del self[k] 1tuabcdefzABgvwhijklmCDxynopqrsEF
55# weak dictionaries allow the dynamically created parametrized versions of generic models to get collected
56# once they are no longer referenced by the caller.
57GenericTypesCache = WeakValueDictionary[GenericTypesCacheKey, 'type[BaseModel]'] 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
59if TYPE_CHECKING: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
61 class DeepChainMap(ChainMap[KT, VT]): # type: ignore
62 ...
64else:
66 class DeepChainMap(ChainMap): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
67 """Variant of ChainMap that allows direct updates to inner scopes.
69 Taken from https://docs.python.org/3/library/collections.html#collections.ChainMap,
70 with some light modifications for this use case.
71 """
73 def clear(self) -> None: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
74 for mapping in self.maps:
75 mapping.clear()
77 def __setitem__(self, key: KT, value: VT) -> None: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
78 for mapping in self.maps:
79 mapping[key] = value
81 def __delitem__(self, key: KT) -> None: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
82 hit = False
83 for mapping in self.maps:
84 if key in mapping:
85 del mapping[key]
86 hit = True
87 if not hit:
88 raise KeyError(key)
91# Despite the fact that LimitedDict _seems_ no longer necessary, I'm very nervous to actually remove it
92# and discover later on that we need to re-add all this infrastructure...
93# _GENERIC_TYPES_CACHE = DeepChainMap(GenericTypesCache(), LimitedDict())
95_GENERIC_TYPES_CACHE = GenericTypesCache() 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
98class PydanticGenericMetadata(typing_extensions.TypedDict): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
99 origin: type[BaseModel] | None # analogous to typing._GenericAlias.__origin__ 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
100 args: tuple[Any, ...] # analogous to typing._GenericAlias.__args__ 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
101 parameters: tuple[TypeVar, ...] # analogous to typing.Generic.__parameters__ 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
104def create_generic_submodel( 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
105 model_name: str, origin: type[BaseModel], args: tuple[Any, ...], params: tuple[Any, ...]
106) -> type[BaseModel]:
107 """Dynamically create a submodel of a provided (generic) BaseModel.
109 This is used when producing concrete parametrizations of generic models. This function
110 only *creates* the new subclass; the schema/validators/serialization must be updated to
111 reflect a concrete parametrization elsewhere.
113 Args:
114 model_name: The name of the newly created model.
115 origin: The base class for the new model to inherit from.
116 args: A tuple of generic metadata arguments.
117 params: A tuple of generic metadata parameters.
119 Returns:
120 The created submodel.
121 """
122 namespace: dict[str, Any] = {'__module__': origin.__module__} 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
123 bases = (origin,) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
124 meta, ns, kwds = prepare_class(model_name, bases) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
125 namespace.update(ns) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
126 created_model = meta( 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
127 model_name,
128 bases,
129 namespace,
130 __pydantic_generic_metadata__={
131 'origin': origin,
132 'args': args,
133 'parameters': params,
134 },
135 __pydantic_reset_parent_namespace__=False,
136 **kwds,
137 )
139 model_module, called_globally = _get_caller_frame_info(depth=3) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
140 if called_globally: # create global reference and therefore allow pickling 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
141 object_by_reference = None 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
142 reference_name = model_name 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
143 reference_module_globals = sys.modules[created_model.__module__].__dict__ 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
144 while object_by_reference is not created_model: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
145 object_by_reference = reference_module_globals.setdefault(reference_name, created_model) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
146 reference_name += '_' 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
148 return created_model 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
151def _get_caller_frame_info(depth: int = 2) -> tuple[str | None, bool]: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
152 """Used inside a function to check whether it was called globally.
154 Args:
155 depth: The depth to get the frame.
157 Returns:
158 A tuple contains `module_name` and `called_globally`.
160 Raises:
161 RuntimeError: If the function is not called inside a function.
162 """
163 try: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
164 previous_caller_frame = sys._getframe(depth) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
165 except ValueError as e: 1tuabcdefzABgvwhijklmCDxynopqrsEF
166 raise RuntimeError('This function must be used inside another function') from e 1tuabcdefzABgvwhijklmCDxynopqrsEF
167 except AttributeError: # sys module does not have _getframe function, so there's nothing we can do about it 1tuabcdefzABgvwhijklmCDxynopqrsEF
168 return None, False 1tuabcdefzABgvwhijklmCDxynopqrsEF
169 frame_globals = previous_caller_frame.f_globals 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
170 return frame_globals.get('__name__'), previous_caller_frame.f_locals is frame_globals 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
173DictValues: type[Any] = {}.values().__class__ 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
176def iter_contained_typevars(v: Any) -> Iterator[TypeVar]: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
177 """Recursively iterate through all subtypes and type args of `v` and yield any typevars that are found.
179 This is inspired as an alternative to directly accessing the `__parameters__` attribute of a GenericAlias,
180 since __parameters__ of (nested) generic BaseModel subclasses won't show up in that list.
181 """
182 if isinstance(v, TypeVar): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
183 yield v 1tuabcdefzABgvwhijklmCDxynopqrsEF
184 elif is_model_class(v): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
185 yield from v.__pydantic_generic_metadata__['parameters'] 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
186 elif isinstance(v, (DictValues, list)): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
187 for var in v: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
188 yield from iter_contained_typevars(var) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
189 else:
190 args = get_args(v) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
191 for arg in args: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
192 yield from iter_contained_typevars(arg) 1tuabcdefzABgvwhijklmCDxynopqrsEF
195def get_args(v: Any) -> Any: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
196 pydantic_generic_metadata: PydanticGenericMetadata | None = getattr(v, '__pydantic_generic_metadata__', None) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
197 if pydantic_generic_metadata: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
198 return pydantic_generic_metadata.get('args') 1tuabcdefzABgvwhijklmCDxynopqrsEF
199 return typing_extensions.get_args(v) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
202def get_origin(v: Any) -> Any: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
203 pydantic_generic_metadata: PydanticGenericMetadata | None = getattr(v, '__pydantic_generic_metadata__', None) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
204 if pydantic_generic_metadata: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
205 return pydantic_generic_metadata.get('origin') 1tuabcdefzABgvwhijklmCDxynopqrsEF
206 return typing_extensions.get_origin(v) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
209def get_standard_typevars_map(cls: Any) -> dict[TypeVar, Any] | None: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
210 """Package a generic type's typevars and parametrization (if present) into a dictionary compatible with the
211 `replace_types` function. Specifically, this works with standard typing generics and typing._GenericAlias.
212 """
213 origin = get_origin(cls) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
214 if origin is None: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
215 return None 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
216 if not hasattr(origin, '__parameters__'): 1tuabcdefzABgvwhijklmCDxynopqrsEF
217 return None 1tuabcdefzABgvwhijklmCDxynopqrsEF
219 # In this case, we know that cls is a _GenericAlias, and origin is the generic type
220 # So it is safe to access cls.__args__ and origin.__parameters__
221 args: tuple[Any, ...] = cls.__args__ # type: ignore 1tuabcdefzABgvwhijklmCDxynopqrsEF
222 parameters: tuple[TypeVar, ...] = origin.__parameters__ 1tuabcdefzABgvwhijklmCDxynopqrsEF
223 return dict(zip(parameters, args)) 1tuabcdefzABgvwhijklmCDxynopqrsEF
226def get_model_typevars_map(cls: type[BaseModel]) -> dict[TypeVar, Any]: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
227 """Package a generic BaseModel's typevars and concrete parametrization (if present) into a dictionary compatible
228 with the `replace_types` function.
230 Since BaseModel.__class_getitem__ does not produce a typing._GenericAlias, and the BaseModel generic info is
231 stored in the __pydantic_generic_metadata__ attribute, we need special handling here.
232 """
233 # TODO: This could be unified with `get_standard_typevars_map` if we stored the generic metadata
234 # in the __origin__, __args__, and __parameters__ attributes of the model.
235 generic_metadata = cls.__pydantic_generic_metadata__ 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
236 origin = generic_metadata['origin'] 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
237 args = generic_metadata['args'] 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
238 if not args: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
239 # No need to go into `iter_contained_typevars`:
240 return {} 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
241 return dict(zip(iter_contained_typevars(origin), args)) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
244def replace_types(type_: Any, type_map: Mapping[TypeVar, Any] | None) -> Any: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
245 """Return type with all occurrences of `type_map` keys recursively replaced with their values.
247 Args:
248 type_: The class or generic alias.
249 type_map: Mapping from `TypeVar` instance to concrete types.
251 Returns:
252 A new type representing the basic structure of `type_` with all
253 `typevar_map` keys recursively replaced.
255 Example:
256 ```python
257 from typing import List, Union
259 from pydantic._internal._generics import replace_types
261 replace_types(tuple[str, Union[List[str], float]], {str: int})
262 #> tuple[int, Union[List[int], float]]
263 ```
264 """
265 if not type_map: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
266 return type_ 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
268 type_args = get_args(type_) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
270 if _typing_extra.is_annotated(type_): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
271 annotated_type, *annotations = type_args 1tuabcdefzABgvwhijklmCDxynopqrsEF
272 annotated = replace_types(annotated_type, type_map) 1tuabcdefzABgvwhijklmCDxynopqrsEF
273 for annotation in annotations: 1tuabcdefzABgvwhijklmCDxynopqrsEF
274 annotated = typing.Annotated[annotated, annotation] 1tuabcdefzABgvwhijklmCDxynopqrsEF
275 return annotated 1tuabcdefzABgvwhijklmCDxynopqrsEF
277 origin_type = get_origin(type_) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
279 # Having type args is a good indicator that this is a typing special form
280 # instance or a generic alias of some sort.
281 if type_args: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
282 resolved_type_args = tuple(replace_types(arg, type_map) for arg in type_args) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
283 if all_identical(type_args, resolved_type_args): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
284 # If all arguments are the same, there is no need to modify the
285 # type or create a new object at all
286 return type_ 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
288 if ( 1tuBgvwxy
289 origin_type is not None
290 and isinstance(type_, _typing_extra.typing_base)
291 and not isinstance(origin_type, _typing_extra.typing_base)
292 and getattr(type_, '_name', None) is not None
293 ):
294 # In python < 3.9 generic aliases don't exist so any of these like `list`,
295 # `type` or `collections.abc.Callable` need to be translated.
296 # See: https://www.python.org/dev/peps/pep-0585
297 origin_type = getattr(typing, type_._name) 1tuabcdefzABgvwhijklmCDxynopqrsEF
298 assert origin_type is not None 1tuabcdefzABgvwhijklmCDxynopqrsEF
300 if _typing_extra.origin_is_union(origin_type): 1tuabcdefzABgvwhijklmCDxynopqrsEF
301 if any(_typing_extra.is_any(arg) for arg in resolved_type_args): 1tuabcdefzABgvwhijklmCDxynopqrsEF
302 # `Any | T` ~ `Any`:
303 resolved_type_args = (Any,) 1tuabcdefzABgvwhijklmCDxynopqrsEF
304 # `Never | T` ~ `T`:
305 resolved_type_args = tuple( 1tuabcdefzABgvwhijklmCDxynopqrsEF
306 arg
307 for arg in resolved_type_args
308 if not (_typing_extra.is_no_return(arg) or _typing_extra.is_never(arg))
309 )
311 # PEP-604 syntax (Ex.: list | str) is represented with a types.UnionType object that does not have __getitem__.
312 # We also cannot use isinstance() since we have to compare types.
313 if sys.version_info >= (3, 10) and origin_type is types.UnionType: 1tuabcdefzABgvwhijklmCDxynopqrsEF
314 return _UnionGenericAlias(origin_type, resolved_type_args) 1abcdefzAghijklmCDnopqrsEF
315 # NotRequired[T] and Required[T] don't support tuple type resolved_type_args, hence the condition below
316 return origin_type[resolved_type_args[0] if len(resolved_type_args) == 1 else resolved_type_args] 1tuabcdefzABgvwhijklmCDxynopqrsEF
318 # We handle pydantic generic models separately as they don't have the same
319 # semantics as "typing" classes or generic aliases
321 if not origin_type and is_model_class(type_): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
322 parameters = type_.__pydantic_generic_metadata__['parameters'] 1tuabcdefzABgvwhijklmCDxynopqrsEF
323 if not parameters: 1tuabcdefzABgvwhijklmCDxynopqrsEF
324 return type_ 1tuabcdefzABgvwhijklmCDxynopqrsEF
325 resolved_type_args = tuple(replace_types(t, type_map) for t in parameters) 1tuabcdefzABgvwhijklmCDxynopqrsEF
326 if all_identical(parameters, resolved_type_args): 1tuabcdefzABgvwhijklmCDxynopqrsEF
327 return type_ 1tuabcdefzABgvwhijklmCDxynopqrsEF
328 return type_[resolved_type_args] 1tuabcdefzABgvwhijklmCDxynopqrsEF
330 # Handle special case for typehints that can have lists as arguments.
331 # `typing.Callable[[int, str], int]` is an example for this.
332 if isinstance(type_, list): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
333 resolved_list = [replace_types(element, type_map) for element in type_] 1tuabcdefzABgvwhijklmCDxynopqrsEF
334 if all_identical(type_, resolved_list): 1tuabcdefzABgvwhijklmCDxynopqrsEF
335 return type_ 1tuabcdefzABgvwhijklmCDxynopqrsEF
336 return resolved_list 1tuabcdefzABgvwhijklmCDxynopqrsEF
338 # If all else fails, we try to resolve the type directly and otherwise just
339 # return the input with no modifications.
340 return type_map.get(type_, type_) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
343def map_generic_model_arguments(cls: type[BaseModel], args: tuple[Any, ...]) -> dict[TypeVar, Any]: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
344 """Return a mapping between the arguments of a generic model and the provided arguments during parametrization.
346 Raises:
347 TypeError: If the number of arguments does not match the parameters (i.e. if providing too few or too many arguments).
349 Example:
350 ```python {test="skip" lint="skip"}
351 class Model[T, U, V = int](BaseModel): ...
353 map_generic_model_arguments(Model, (str, bytes))
354 #> {T: str, U: bytes, V: int}
356 map_generic_model_arguments(Model, (str,))
357 #> TypeError: Too few arguments for <class '__main__.Model'>; actual 1, expected at least 2
359 map_generic_model_argumenst(Model, (str, bytes, int, complex))
360 #> TypeError: Too many arguments for <class '__main__.Model'>; actual 4, expected 3
361 ```
363 Note:
364 This function is analogous to the private `typing._check_generic_specialization` function.
365 """
366 parameters = cls.__pydantic_generic_metadata__['parameters'] 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
367 expected_len = len(parameters) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
368 typevars_map: dict[TypeVar, Any] = {} 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
370 _missing = object() 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
371 for parameter, argument in zip_longest(parameters, args, fillvalue=_missing): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
372 if parameter is _missing: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
373 raise TypeError(f'Too many arguments for {cls}; actual {len(args)}, expected {expected_len}') 1tuabcdefzABgvwhijklmCDxynopqrsEF
375 if argument is _missing: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
376 param = typing.cast(TypeVar, parameter) 1tuabcdefzABgvwhijklmCDxynopqrsEF
377 try: 1tuabcdefzABgvwhijklmCDxynopqrsEF
378 has_default = param.has_default() 1tuabcdefzABgvwhijklmCDxynopqrsEF
379 except AttributeError: 1tuabcdefBgvwhijklmxynopqrs
380 # Happens if using `typing.TypeVar` (and not `typing_extensions`) on Python < 3.13.
381 has_default = False 1tuabcdefBgvwhijklmxynopqrs
382 if has_default: 1tuabcdefzABgvwhijklmCDxynopqrsEF
383 typevars_map[param] = param.__default__ 1tuabcdefzABgvwhijklmCDxynopqrsEF
384 else:
385 expected_len -= sum(hasattr(p, 'has_default') and p.has_default() for p in parameters) 1tuabcdefzABgvwhijklmCDxynopqrsEF
386 raise TypeError(f'Too few arguments for {cls}; actual {len(args)}, expected at least {expected_len}') 1tuabcdefzABgvwhijklmCDxynopqrsEF
387 else:
388 param = typing.cast(TypeVar, parameter) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
389 typevars_map[param] = argument 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
391 return typevars_map 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
394_generic_recursion_cache: ContextVar[set[str] | None] = ContextVar('_generic_recursion_cache', default=None) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
397@contextmanager 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
398def generic_recursion_self_type( 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
399 origin: type[BaseModel], args: tuple[Any, ...]
400) -> Iterator[PydanticRecursiveRef | None]:
401 """This contextmanager should be placed around the recursive calls used to build a generic type,
402 and accept as arguments the generic origin type and the type arguments being passed to it.
404 If the same origin and arguments are observed twice, it implies that a self-reference placeholder
405 can be used while building the core schema, and will produce a schema_ref that will be valid in the
406 final parent schema.
407 """
408 previously_seen_type_refs = _generic_recursion_cache.get() 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
409 if previously_seen_type_refs is None: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
410 previously_seen_type_refs = set() 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
411 token = _generic_recursion_cache.set(previously_seen_type_refs) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
412 else:
413 token = None 1tuabcdefzABgvwhijklmCDxynopqrsEF
415 try: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
416 type_ref = get_type_ref(origin, args_override=args) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
417 if type_ref in previously_seen_type_refs: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
418 self_type = PydanticRecursiveRef(type_ref=type_ref) 1tuabcdefzABgvwhijklmCDxynopqrsEF
419 yield self_type 1tuabcdefzABgvwhijklmCDxynopqrsEF
420 else:
421 previously_seen_type_refs.add(type_ref) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
422 yield 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
423 previously_seen_type_refs.remove(type_ref) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
424 finally:
425 if token: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
426 _generic_recursion_cache.reset(token) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
429def recursively_defined_type_refs() -> set[str]: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
430 visited = _generic_recursion_cache.get() 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
431 if not visited: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
432 return set() # not in a generic recursion, so there are no types 1tuabcdefzABgvwhijklmCDxynopqrsEF
434 return visited.copy() # don't allow modifications 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
437def get_cached_generic_type_early(parent: type[BaseModel], typevar_values: Any) -> type[BaseModel] | None: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
438 """The use of a two-stage cache lookup approach was necessary to have the highest performance possible for
439 repeated calls to `__class_getitem__` on generic types (which may happen in tighter loops during runtime),
440 while still ensuring that certain alternative parametrizations ultimately resolve to the same type.
442 As a concrete example, this approach was necessary to make Model[List[T]][int] equal to Model[List[int]].
443 The approach could be modified to not use two different cache keys at different points, but the
444 _early_cache_key is optimized to be as quick to compute as possible (for repeated-access speed), and the
445 _late_cache_key is optimized to be as "correct" as possible, so that two types that will ultimately be the
446 same after resolving the type arguments will always produce cache hits.
448 If we wanted to move to only using a single cache key per type, we would either need to always use the
449 slower/more computationally intensive logic associated with _late_cache_key, or would need to accept
450 that Model[List[T]][int] is a different type than Model[List[T]][int]. Because we rely on subclass relationships
451 during validation, I think it is worthwhile to ensure that types that are functionally equivalent are actually
452 equal.
453 """
454 return _GENERIC_TYPES_CACHE.get(_early_cache_key(parent, typevar_values)) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
457def get_cached_generic_type_late( 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
458 parent: type[BaseModel], typevar_values: Any, origin: type[BaseModel], args: tuple[Any, ...]
459) -> type[BaseModel] | None:
460 """See the docstring of `get_cached_generic_type_early` for more information about the two-stage cache lookup."""
461 cached = _GENERIC_TYPES_CACHE.get(_late_cache_key(origin, args, typevar_values)) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
462 if cached is not None: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
463 set_cached_generic_type(parent, typevar_values, cached, origin, args) 1tuabcdefzABgvwhijklmCDxynopqrsEF
464 return cached 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
467def set_cached_generic_type( 1tuabcdefzAvwhijklmCDMGHIJKLxynopqrsEF
468 parent: type[BaseModel],
469 typevar_values: tuple[Any, ...],
470 type_: type[BaseModel],
471 origin: type[BaseModel] | None = None,
472 args: tuple[Any, ...] | None = None,
473) -> None:
474 """See the docstring of `get_cached_generic_type_early` for more information about why items are cached with
475 two different keys.
476 """
477 _GENERIC_TYPES_CACHE[_early_cache_key(parent, typevar_values)] = type_ 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
478 if len(typevar_values) == 1: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
479 _GENERIC_TYPES_CACHE[_early_cache_key(parent, typevar_values[0])] = type_ 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
480 if origin and args: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
481 _GENERIC_TYPES_CACHE[_late_cache_key(origin, args, typevar_values)] = type_ 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
484def _union_orderings_key(typevar_values: Any) -> Any: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
485 """This is intended to help differentiate between Union types with the same arguments in different order.
487 Thanks to caching internal to the `typing` module, it is not possible to distinguish between
488 List[Union[int, float]] and List[Union[float, int]] (and similarly for other "parent" origins besides List)
489 because `typing` considers Union[int, float] to be equal to Union[float, int].
491 However, you _can_ distinguish between (top-level) Union[int, float] vs. Union[float, int].
492 Because we parse items as the first Union type that is successful, we get slightly more consistent behavior
493 if we make an effort to distinguish the ordering of items in a union. It would be best if we could _always_
494 get the exact-correct order of items in the union, but that would require a change to the `typing` module itself.
495 (See https://github.com/python/cpython/issues/86483 for reference.)
496 """
497 if isinstance(typevar_values, tuple): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
498 args_data = [] 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
499 for value in typevar_values: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
500 args_data.append(_union_orderings_key(value)) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
501 return tuple(args_data) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
502 elif _typing_extra.is_union(typevar_values): 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
503 return get_args(typevar_values) 1tuabcdefzABgvwhijklmCDxynopqrsEF
504 else:
505 return () 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
508def _early_cache_key(cls: type[BaseModel], typevar_values: Any) -> GenericTypesCacheKey: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
509 """This is intended for minimal computational overhead during lookups of cached types.
511 Note that this is overly simplistic, and it's possible that two different cls/typevar_values
512 inputs would ultimately result in the same type being created in BaseModel.__class_getitem__.
513 To handle this, we have a fallback _late_cache_key that is checked later if the _early_cache_key
514 lookup fails, and should result in a cache hit _precisely_ when the inputs to __class_getitem__
515 would result in the same type.
516 """
517 return cls, typevar_values, _union_orderings_key(typevar_values) 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
520def _late_cache_key(origin: type[BaseModel], args: tuple[Any, ...], typevar_values: Any) -> GenericTypesCacheKey: 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF
521 """This is intended for use later in the process of creating a new type, when we have more information
522 about the exact args that will be passed. If it turns out that a different set of inputs to
523 __class_getitem__ resulted in the same inputs to the generic type creation process, we can still
524 return the cached type, and update the cache with the _early_cache_key as well.
525 """
526 # The _union_orderings_key is placed at the start here to ensure there cannot be a collision with an
527 # _early_cache_key, as that function will always produce a BaseModel subclass as the first item in the key,
528 # whereas this function will always produce a tuple as the first item in the key.
529 return _union_orderings_key(typevar_values), origin, args 1tuabcdefzABgvwhijklmCDMGHIJKLxynopqrsEF